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Abstract. A matrix model to describe dynamical loops on random planar graphs is analysed.
It has similarities with a model studied by Kazakov, a few years ago, and theO(n) model
of Kostov and collaborators. The main difference is that all loops are coherently oriented and
empty. The free energy is analytically evaluated and the continuum limit is analysed in a region
of parameters where the universality of the continuum description may not be expected. Our
phase diagram is analogous to Kazakov’s model with two phases (surface with small holes and
tearing phase) with Kazakov’s scaling exponents. The critical exponents of the third phase,
which occurs on the boundary between the two above phases, differ from the corresponding
exponents in Kazakov’s model [1].

1. Introduction

Field theory models with matrix variables have been the focus of a very large number
of investigations in the past decade. The analysis of these models in the limit of large
order of the matrices, the large-N limit, even in reduced dimension of spacetime, provides
important suggestions for the non-perturbative understanding of quantum field theory and
for the formulation of string theory.

At the beginning of the recent developments, much attention was given to the loop
correlators

W(l1, l2, . . . , lm) = 1

Nm
〈(Tr el18) . . . (Tr elm8)〉V

= 1

Z

∫
D8e−N TrV (8) 1

Nm
Tr(el18) . . .Tr(elm8) (1.1)

and their Schwinger–Dyson equations. In the simplest case the potentialV (8) is a
polynomial in the Hermitian matrix variable8. The Laplace transform of the above
correlators

W̃ (p1, p2, . . . , pm) = 1

Nm

〈
Tr

(
1

p1 −8

)
. . .Tr

(
1

pm −8

)〉
V

(1.2)
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satisfy a chain of equations where multi-loop correlators may be evaluated from correlators
with fewer loops, and correlators of higher genus in the topological expansion are evaluated
from correlators of lower genus [2–5].

The Schwinger–Dyson equation for the one-loop correlator

NV ′
(
∂

∂l

)
W(l) =

∫ l

0
dl′W(l′, l − l′) (1.3)

implies, in the planar limit, a quadratic equation for its Laplace transform, with a solution
equivalent to the more usual saddle-point analysis.

Loop correlators correspond to insertions of loops of perimetersl1, . . . , lm in the
dynamical triangulation provided by the graphs dual to the planar Feynman graphs of the
model. Loop equations have a pictorial interpretation as splitting or gluing of loops and
handles. In the continuum limit of the matrix model, obtained for critical values of the
couplings in the potential, loops may be arranged to have finite or infinitesimal lengths,
thus being referred to as macroscopic or, respectively, microscopic loops.

A related analysis was done for the operatorψn = Tr(8n), corresponding to the insertion
of an n-sided polygon in the dynamical triangulation. Duplantier and Kostov analysed the
connected two-point correlator〈Tr(8L)Tr(8L)〉V , and obtained critical coefficients for the
problem of random self-avoiding paths on random planar graphs [6].

In a very interesting paper, Kazakov [7] analysed the effects ofdynamical loops in the
simplest one-matrix model, in the planar limit. The partition function is

Z =
∫

DM exp{−N Tr[ 1
2M

2 − 1
4gM

4 + L log(1 − z2M2)]}. (1.4)

(We slightly change Kazakov’s notation to simplify the comparison with the present paper.)
In the large-N limit, the free energyE = − 1

N2 logZ is the sum of planar Feynman graphs
where ‘gluons’ interact with the quartic vertexg and, in the proper continuum limit, describe
planar connected surfaces with the insertion of an arbitrary number of holes of arbitrary
lengths. The parameterL may be regarded as the hole fugacity. In the large-N limit, by a
saddle-point analysis, he showed that the model has three different phases in the continuum
limit, characterized by different scaling behaviours asL → 0 of the average number of
holes〈h〉 and of the total perimeter of the holes〈l〉, both observables being evaluated per
unit area:

(i) The ‘small-holes phase’, which occurs forg/z2 > 2
3, where holes are rare (〈h〉 → 0)

and the average length of one hole〈l〉/〈h〉 approaches a finite value while the surface area
diverges.

(ii) The ‘tearing phase’, which occurs forg/z2 < 2
3, where the surface is almost filled

with large and dense holes. In the limitL → 0, 〈l〉 approaches a non-vanishing constant,
quite like an order parameter of a spontaneous symmetry breaking. This finite value, due to
the diverging perimeter of the average hole while the number of holes vanishes (〈h〉 ∼ L2/3),
may be called the residual total perimeter.

(iii) The border line in the parameter space, separating the two above-mentioned two-
dimensional manifolds, atg/z2 = 2

3, provides another scaling behaviour〈h〉 ∼ L4/5,
〈l〉 ∼ L2/5. The average length diverges as in the ‘tearing phase’, but the residual total
perimeter〈l〉 vanishes as in the ‘small-holes phase’.

The same model was later analysed by Kostov [8] and Minahan [9], with the technique
of orthogonal polynomials. The role of fermions in generating dynamical loops in matrix
models of Kazakov type, equation (1.4), was investigated in one dimension [10, 11]. A
similar analysis was also done in unitary matrix models with boundary terms [9, 12].
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Field theory models of surfaces with dynamical loops are interesting for the formulation
of field theories of interacting strings. They are usually called field theories of open strings,
but also have implications for models of surfaces with handles and no boundaries, usually
referred to as field theories of closed strings. Indeed, after a proper identification ofh

pairs of boundaries, the partition function associated to a surface with 2h boundaries must
be equal to the partition function associated with a surface withh handles. In the past
few years, large-N QCD on a generic two-dimensional manifold has been investigated as
a string model and as a topological theory [13–16] and some identities of this type were
exhibited.

This paper is an investigation of a closely related random matrix model which seems
promising for the description of two-dimensional manifolds with oriented boundaries. The
present model is the most straightforward analogue, in zero dimension of spacetime, of
the Veneziano multi-flavour chromodynamics, with the gluon field replaced by a Hermitian
N × N matrix M and theL-flavoured fermions replaced by a set ofL complexN × N

matricesφa, a = 1, . . . , L.
The partition function of our model is

ZN(L, z) =
∫

DM
L∏
a=1

Dφa exp

{
−N Tr

[
V (M)+ 1

2

L∑
a=1

φ†
aφa − z

L∑
a=1

(Mφ†
aφa)

]}
(1.5a)

with z > 0 and the usual integration measures for Hermitian and complex matrices

DM =
N∏
i=1

dMii

∏
i<j

d(ReMij ) d(ImMij ) Dφ =
N∏

i,j=1

d(Reφij ) d(Imφij ).

Our choice of potential is

V (M) = 1
2M

2 + 1
3gM

3 (1.5b)

By performing the Gaussian integration over the complex matricesφa, and neglecting an
irrelevant constant, the partition function (1.5a) is rewritten as

ZN(L, z) =
∫

DM exp{−N Tr[V (M)+ L log(1 − 2zM)]}. (1.5c)

As is apparent from (1.5), the model, in the large-N limit, describes connected planar
surfaces, generated by ‘gluons’ with cubic interactions, with an arbitrary number of
coherently oriented non-intersecting closed boundaries (holes), generated by the propagators
of the charged fieldsφa (figure 1).

The signs of the various couplings in the action deserve a comment. Both signs ofL are
interesting: the positive sign in (1.4) and (1.5c) is usually referred to as the bosonic case,
the opposite sign would correspond to boundaries originated by fermionic fields. In the
model (1.5b), (1.5c), as is seen by changingM into −M, there are only two inequivalent
cases according togz > 0 or gz < 0. In the latter case, let us considerg < 0 andz > 0. It
follows that the coefficientsck in the expansion of the actionA = ∑

ckM
k are all negative

for k > 2. This situation also occurs in Kazakov’s model (1.4) and one expects critical
coefficients in the same class of universality.

The present paper is concerned with the caseg > 0, z > 0. Because of the non-
constant sign of the coefficientsck, one cannot predict critical coefficients to be in the same
universality class. In a way quite analogous to Kazakov’s model, three phases are found.
The scaling behaviour of relevant observables is the same for phases (i) and (ii), but it
is different for phase (iii). This non-universal behaviour is the main result of the present
paper.
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Figure 1. A portion of a planar graph generated by the model (1.5a).
The loops formed by black arrows are generated by the propagators of
the charged fields.

TheL-expansion of the free energy

E(L, z) = − lim
N→∞

1

N2
logZN = E0 +

∞∑
k=1

LkEk(z) (1.6)

provides the generatorsEk(z) of connected planar graphs withk holes. The further
expansion ofEk in powers ofz classifies graphs according to the total perimeter of the
k holes, measured as the number of connections with the surrounding surface. The termE0

is the planar free energy of the cubic one-matrix model, solved some time ago [17].
In the Boltzmann factor in (1.5a) one could add the term providing the other orientation,

z√
N

L∑
a=1

Tr(φ†
aMφa)

to obtain

Tr
L∑
1

{
1

2
φ†
aφa − z√

N
M(φ†

aφa + φaφ
†
a)

}
= Tr

2L∑
1

[
1

2
8a8a − 2z√

N
M8a8a

]
(1.7)

where8a is the set of 2L HermitianN × N matrices defined by the Hermitian and the
anti-Hermitian components ofφa. One would then obtain the partition function of the
O(2L) vector model on a random lattice [6, 18–20]. In the large-N limit, its free energy
describes connected surfaces with any number of non-oriented, self-avoiding loops which
are not holes.

The paper is organized as follows. In section 2 we compute the free energy for the
cubic interaction with charged loops and introduce the thermodynamic quantities. Next, in
section 3, we explore its critical behaviour. We also give a simple theorem to show the
connection of the edge behaviour of the eigenvalue density with the critical behaviour of the
parameters for its support. In section 4, we provide an independent analysis with orthogonal
polynomials. The non-universality found for the boundary phase (iii), related to the non-
equivalence of the critical points with opposite signs of the cubic coupling, is explained.
In section 5 we show the relationship of the one-hole term, with generic potential, with the
leading asymptotics of orthogonal polynomials. Section 6 summarizes the conclusions.

2. The free energy for connected random surfaces with holes

In this section we proceed to evaluate the large-N limit of the free energy of the model in
(1.5). According to the standard procedure, to study the large-N behaviour ofZN in (1.5c),
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one performs the change of variables from the setMij to eigenvaluesλi and angles, which
can be integrated. The partition function, with irrelevant constants removed, is

ZN =
∫ N∏

i=1

dλi
∏
i<j

(λi − λj )
2 exp

{
−N

N∑
i=1

[V (λi)+ L log(1 − 2zλi)]

}
. (2.1)

The integral is dominated by a saddle-point configuration, described by a normalized density
ρ(λ) with support(a, b), that solves the singular integral equation

λ+ gλ2 − 2zL

1 − 2zλ
− 2P

∫ b

a

dµ
ρ(µ)

λ− µ
= 0. (2.2)

The solution is

ρ(λ) = 1

2π

√
(b − λ)(λ− a)

[
gλ+ (gs + 1)− z

2s(1 + gs)+ gd2

1 − 2zλ

]
(2.3)

wheres ≡ (a + b)/2 andd ≡ (b − a)/2 are determined by the two equations

L− 2 = s(1 + gs)

(
1

2z
− s

)
− d2

2

(
1 + 3gs − g

2z

)
(2.4a)

2zL =
(
s + gs2 + g

2
d2

) √
(1 − 2zs)2 − 4z2d2. (2.4b)

Of course, the solution (2.3) holds if the poleλ = 1/2z is outside the support. Since we
choosez > 0, we require 1/2z > b. After a long computation we obtain a simplified, yet
not inspiring, expression for the free energy

E(g,L, z) = − log

(
d

2

)
+ L log

[
d

2
(h+

√
h2 − 1)

]
− L2

2
log

[
h+ √

h2 − 1√
h2 − 1

]

+Ld
2

16
(1 + 2gs)

[
2 −

(
h−

√
h2 − 1

)2
]

+ Lg

4
d3

[
h3

3
− h

2
− (h2 − 1)3/2

3

]
−L

2
+ 1

16z2

( g
3z

+ 1
) [

1 − d2

4
(1 + 2gs)

]
+ g2d6

192
+ d4

64
[1 + 6gs + 6g2s2]

+d
2

4

[
s(1 + gs)+ g

2
d2

] [
gd2

24
+

(
gs

6
+ 1

4

) (
1

2z
+ s

)
+ g

24z2

]
+d

2

48
(1 + 2gs)(2gs3 + 3s2 + 6)+ s2

4
+ gs3

6
h ≡ 1

d

(
1

2z
− s

)
. (2.5)

For later use, and as a check of the above expression, we computed the first terms of the
Taylor expansion inL of the free energy. The details are given in the appendix.

It is convenient to introduce the fugacity of the holes, perimeterτ = g/(2z). In the
expansion

E(g,L, τ) =
∞∑
k=1

gkEk(L, τ) (2.6)

whereEk(L, τ) corresponds to the partition function of a statistical system of loops on
random planar lattices withk sites.gcr(L, τ) being the radius of convergence of the series,
in the thermodynamic limit the free energy per site is

f (L, τ) = lim
k→∞

1

k
logEk(L, τ) = loggcr(L, τ) (2.7)
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which allows us to evaluate the average number of holes per site

〈h〉 = ∂ loggcr(L, τ)

∂ logL
(2.8)

and the average length of the total perimeter

〈l〉 = −∂ loggcr(L, τ)

∂ logτ
. (2.9)

Before closing this section we briefly recall the simpler model equations (1.5) with
g = 0. A few terms of theL expansion of the planar free energy were evaluated long ago
[21] and provide a non-trivial check for the more involved algebra of the present paper.

Wheng = 0 one may perform the Gaussian integration of the matrix M in equation (1.5)
to obtain, neglecting irrelevant constants, the partition function for a set ofL complex
matricesφa with quartic coupling

ZN(L, z) =
∫ L∏

a=1

Dφa exp

{
− Tr

[
1

2

L∑
a=1

φ†
aφa − z2

2N

( L∑
a=1

φ†
aφa

)2]}
. (2.10)

There are advantages in regardingZN(L, z) as a model of just one rectangular matrix8, of
dimensionNL× N with random complex entries. In this way the model was solved both
in the planar limit [22] and, by the orthogonal polynomial technique, in the 1/N expansion
[23]. This approach clarifies an interesting symmetry of Green functions under the exchange
L → 1/L, which may also have a bearing in the present case. For square matrices, that is
L = 1, it is well known [17] that the model should be analysed in the large-N limit only
for 0 6 z2 6 z2

cr = 1
48. For genericL, the boundz2 6 z2

cr(L) is the special caseg = 0

of (3.9). In figure 2 we plot the critical line, and exhibit the pointL = 1, 1/(2z) = 2
√

3.
The finite arc with 0< L < 1 is mapped into the infinite arcL > 1 through the symmetry
(L, ξ) ⇔ (1/L, ξ/

√
L), whereξ = 1/2z.

We remark that the saddle point (2.2), after the shiftx = λ − s, is easily rewritten
as a system of two equations for the even and odd components of the eigenvalue density

Figure 2. The critical linez2 = z2
cr(L) of the model (2.10).
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ρ(x) = ρe(x)+ ρo(x), whereρe(x) = ρe(−x) andρo(x) = −ρo(−x):

gx2 + s(1 + gs)−
(

1

2z
− s

)
L

(1/2z − s)2 − x2
= 2P

∫ d

−d
dy
ρo(y)

x − y
(2.11a)

x(1 + 2gs)− Lx

(1/2z − s)2 − x2
= 2P

∫ d

−d
dy

ρe(y)

x − y
. (2.11b)

As long as 06 z2 6 z2
cr(L) the coupled equations (2.11) are trivially equivalent to (2.2). One

may, however, consider the analytic continuation forz2 6 0, which in the simpler model
(2.10) corresponds to the usually ‘correct’ real positive value for the quartic coupling. Since
z would be pure imaginary, the saddle-point equation (2.2) becomes complex and (2.11)
suggest the proper path in the complex plane, as was evaluated in [21].

3. Phases and continuum limits

In this section we describe the singularities of the free energy with respect to the couplings,
which lead to different phases for the model and distinct continuum limits.

We recall that in one-matrix models where the potential is a polynomial in the matrix
variable, one generally finds that such singularities are determined by the condition that
the variables specifying the support are singular functions of the couplings in the potential.
This in turn is equivalent to the requirement that the eigenvalue density vanishes at the end
of the support with a zero of ordern+ 1

2, with the integern larger than zero.
These properties of one-matrix models are well known and were proved using orthogonal

polynomials by Itzykson and Zuber [24]. However, phase transitions are more conveniently
discussed in the saddle-point approach, and the simple proof provided here also sheds light
on the limitations of the assertions.

Let us consider a polynomial potentialV (λ) = ∑
k gkλ

k. The saddle-point equation
for the normalized densityρ(λ) can be solved by the Poincaré–Bertrand inversion formula
[25]. In the phase where the support is a single segment(a, b), the solution may be written
as

ρ(λ) = 1

π

1√
(b − λ)(λ− a)

P(λ, b, a, gi)

P(λ, b, a, gi) = 1 + 1

2π
P

∫ b

a

dµ
√
(b − µ)(µ− a)

V ′(µ)
µ− λ

(3.1)

whereP(λ, b, a, gi) is a polynomial in the variableλ whose coefficients are entire functions
of b, a andgi . The end pointsa(gi), b(gi) of the support are determined by the conditions

P(λ = a, b, a, gi) = P(λ = b, b, a, gi) = 0. (3.2)

Inserting the identity
√
(b − µ)(µ− a)

µ− λ
= (b − λ)(λ− a)

(µ− λ)
√
(b − µ)(µ− a)

+ a + b − λ− µ√
(b − µ)(µ− a)

in equation (3.1) and imposing the conditions (3.2), one obtains the following equations for
the extrema:

1

2π

∫ b

a

dµ
V ′(µ)√

(b − µ)(µ− a)
= 0

1

2π

∫ b

a

dµ
µV ′(µ)√

(b − µ)(µ− a)
= 1 (3.3)
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and the factorization

P(λ, b, a, gi) = (b − λ)(λ− a)Q(λ)

Q(λ) = 1

2π

∫ b

a

dµ
V ′(µ)− V ′(λ)

µ− λ

1√
(b − µ)(µ− a)

.
(3.4)

The above formula implies that, generically, the densityρ(λ) vanishes with a zero of order
one half at the extrema of its support.

Since the free energyE(gi) may be evaluated as a polynomial functional ofρ(λ) and
because of the polynomial nature ofQ(λ, b, a, gi), the singularities ofE(gi) may only
occur as singularities of the functionsa(gi) and b(gi). By differentiating equations (3.2)
with respect to any free parametergi , and carrying the computations of the required partial
derivatives in the parametersa, b in (3.1) and in the variableλ on formula (3.4), one
eventually finds

∂a

∂gi
= −2

(∂P/∂gi)λ=a
(b − a)Q(a)

∂b

∂gi
= 2

(∂P/∂gi)λ=b
(b − a)Q(b) . (3.5)

Therefore, the singularities of the left-hand sides of equations (3.5) may only occur at the
zeros of the denominators of the right-hand sides. These, in turn, imply a non-generic order
for the vanishing of the density at the edge of its support.

We recall important examples where the above argument is evaded. In the attempt to
describe random surfaces with extrinsic curvature, matrix models were proposed where the
potentialV (M) of the Hermitian matrixM is a sum of monomials and the same invariant
trace occurs with different powers [26]. The simplest example is

V (M) = a Tr(M2)+ b Tr(M4)+ c[Tr(M2)]2. (3.6)

The eigenvalue density is easily found in the large-N limit by the saddle-point analysis.
However, more parameters determined by more equations occur, and the general features
described above in equations (3.1)–(3.4) must be generalized. Indeed it was shown that
these models yield susceptibilities with unusual critical coefficients [26, 27].

A second class of models which escape the above theorem occur if the one-matrix
potential is not a polynomial. This is the case for the Kazakov model and for the present
paper. Then the functionQ(λ, b, a, gi) in (3.4) is not a polynomial and the singularities in
(3.5) may arise from singularities of the numerator in the right-hand side of the equation.

We proceed to analyse the critical behaviour of our model.
To investigate the singular behaviour of the end-pointsa and b of the support, or

equivalently of the functionss andd given by (2.4), it is convenient to introduce the new
variables

σ ≡ gs δ ≡ gd τ ≡ g

2z
. (3.7)

From equation (2.4a) we isolateδ

δ2

2
= σ(1 + σ)(τ − σ)− g2(L− 2)

1 + 3σ − τ
(3.8a)

which allows us to rewrite (2.4b) as a single equation forσ(g2, L, τ ):

g2L = σ(1 + σ)(1 + 2σ)− g2(L− 2)

1 + 3σ − τ

√
(τ − σ)2 − 2

σ(1 + σ)(τ − σ)− g2(L− 2)

1 + 3σ − τ
.

(3.8b)
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A special situation occurs for 1+ 3σ − τ = 0, and will be discussed later. The above
formulae are also the starting point for the expansion inL of the free energy, as discussed
in the appendix.

The singular behaviour of the functionσ(g2, L, τ ) can be characterized by the condition
∂(g2)/∂σ = 0 which, by equation (3.8b), provides a constraint on the parameters. Together,
the equations describe in the space(g2, L, τ ), surfaces of criticalityg2 = g2

cr(L, τ). Such
surfaces will now be investigated in the form ofL expansions. We could equally well
considerL andg2 as spectators, and require the condition∂τ/∂σ = 0, which would provide
an identical equation for the critical behaviour. The second equation is

3g2L = (6σ 2 + 6σ + 1)
√
(τ − σ)2 − δ2 + g2L(1 + 3σ − τ)

(τ − σ)2 − δ2

×
[
σ − τ − (1 + 2σ)(τ − σ)− σ(1 + σ)

1 + 3σ − τ

+3
σ(1 + σ)(τ − σ)+ g2(2 − L)

(1 + 3σ − τ)2

]
. (3.9)

In a way fully analogous to the Kazakov model [7] we find three phases for the continuum
limit for small values ofL.

3.1. The small holes phase

If τ > τ0 ≡ 1
2(

√
3 − 1) the set of equations (3.8) and (3.9) allow a Taylor expansion asL

approaches zero:

σ(τ) = σ0 + Lσ1(τ )+ L2σ2(τ )+ · · ·
δ2(τ ) = δ2

0 + Lδ2
1(τ )+ L2δ2

2(τ )+ · · ·
g2

cr(τ ) = g2
0 + Lg2

1(τ )+ L2g2
2(τ )+ · · ·

(3.10)

where

σ0 = −3 + √
3

6
δ2

0 = 1

3
g2

0 = 1

12
√

3

g2
1(τ ) = 1

24
√

3

1 −
√

2τ + 1 − √
3

2τ + 1 + 1/
√

3


σ1(τ ) = 1

36

[
τ +

√
3 + 1

2

] [
τ −

√
3 − 1

2

]−1/2 [
τ +

√
3 + 3

6

]−3/2

.

(3.11)

The expansions (3.10) are supposed to hold forL 6 Lcr. The criticality is very similar to
the pure gravity matrix model. From equations (2.8) and (2.9), we find

〈h〉 ∼ L

2

g2
1(τ )

g2
0

〈l〉 ∼ − Lτ

2g2
0

∂

∂τ
g2

1(τ ) (3.12)

and the average perimeter of one hole〈l〉/〈h〉 approaches a finite constant.
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3.2. The tearing phase

If 0 < τ < τ0, equations (3.8) and (3.9) imply a non-analytic contribution forL close to
zero. We find

σ(τ) = σ0(τ )+ L2/3σ1(τ )+ · · ·
δ2(τ ) = δ2

0(τ )+ L2/3δ2
1(τ )+ · · ·

g2
cr(τ ) = g2

0(τ )+ L2/3g2
1(τ )+ · · ·

(3.13)

with

σ0(τ ) = 1
3

[
τ − 1 +

√
1 − 2τ − 2τ 2

]
δ2

0(τ ) = −2σ0(τ )[1 + σ0(τ )]

g2
0(τ ) = − 1

2σ0(τ )[1 + σ0(τ )][1 + 2σ0(τ )].

The reality of the roots implies the above-mentioned allowed range forτ .
By inserting the expansions, equations (3.13), in the expression of the free energy,

equation (2.5), one finds a non-analytic contribution forE(L) at L = 0, of the form
E(L) ∼ L2/3:

〈h〉 ∼ L2/3 〈l〉 ∼ −∂ logg2
0(τ )

∂ logτ
.

The average hole has a diverging perimeter〈l〉/〈h〉 ∼ L−2/3.
The scaling exponents evaluated in the small holes phase and in the tearing phase fully

agree with Kazakov results.

3.3. The line separating the two phases

A third phase is found on the lineτ = 1 + 3σ , sometime referred to as the border phase.
The set of equations (3.8) and (3.9) allow a very simple analysis for any value ofL. We
find

54(g2L)2
[

1 − 8

L
+ 8

L2

]
+ 27(g2L)4/3 − 1 = 0

σ = 1
6

[
−3 +

√
3 + 18(g2L)2/3

]
δ2 = 1

3 + (g2L)2/3

(3.14)

and the following expression for the density, with a non-generic edge behaviour:

ρ(λ) = g2

2π

(b − λ)3/2(λ− a)3/2

1 + 3σ − gλ
. (3.15)

It is also possible to evaluate〈l〉 and 〈h〉 along the whole border line. We calculate
the partial derivatives∂g2/∂τ and ∂g2/∂L in equation (3.8a), then we use the criticality
condition in the equivalent and more convenient form resulting from the orthogonal
polynomial analysis, equation (4.12). For the border line we obtain

〈l〉 = τ

2g2

(g2L)2/3

2 − L
〈h〉 = 1

2

L

2 − L

〈l〉
〈h〉 = τ(g2L)−1/3 = 3

√
2τ√

(2τ + 1 − √
3)(2τ + 1 + √

3)
.

(3.16)
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It is remarkable that the valueL = 2 seems to be the upper value for criticality in this
model, as well as in the vector model on random planar graphs [18–20].

For small values ofL we find the dominant singular behaviour of the free energy

Esing(L) ∼ constant× L2/3 〈l〉
〈h〉 ∼ τ0(g

2L)−1/3. (3.17)

These scaling behaviours differ from those found by Kazakov in phase (iii). In our
model the perimeter〈l〉/〈h〉 ∼ L−1/3 exhibits a milder divergence than in Kazakov’s model,
where it scales asL−2/5.

By comparing the expansion forg2
cr(τ ) in equation (3.10) with the corresponding one,

equation (12) in [7], the origin for the different critical exponents in this third phase is
apparent: as the point in the parameter space approaches the border line from the critical
phase (i), that isτ → τ0, the coefficientg2

1(τ ) remains finite (although not differentiable),
while it diverges as a square root in the Kazakov model. One also sees the existence of a
different valueτ1 = − 1

2(1+ 1√
3
) which provides the same critical exponents as in Kazakov’s

model, but is outside the region analysed in this section. We reconsider this point at the
end of the next section.

4. The orthogonal polynomial analysis

The qualitative description of the critical behaviour found in the previous section is
equivalent to that of Kazakov’s model, with the same critical exponents in two critical
phases: the small-holes (perturbative) phase and the tearing phase, but a different one in the
border phase. This discrepancy deserves a deeper understanding, provided in this section,
where the critical behaviour is explored by means of orthogonal polynomials [17, 28]. This
independent analysis is more straightforward and it better describes the continuum limit
arising from the dynamical triangulation.

After a rescalingφ = gM the partition function (1.5c) may be written as

Z =
∫

dφ exp− tr
N

g2
( 1

2φ
2 + 1

3φ
3 + g2L ln(τ − φ)) =

∫
dφ exp− tr

N

g2
V(φ). (4.1)

Let us introduce the set〈ϕ|n〉 = Pn(ϕ) of orthogonal and normalized polynomials

〈m|n〉 =
∫

dϕ e− tr(N/g2)V(ϕ)Pm(ϕ)Pn(ϕ) = δmn. (4.2)

The coordinate operator̂ϕ : g(ϕ) → ϕg(ϕ) has the following matrix elements:

〈m|ϕ̂|n〉 =
√
Rmδm,n+1 + Snδm,n +

√
Rnδm,n−1. (4.3)

The coefficientsRn andSn are determined by the ‘equations of motion’:

〈n|V ′(ϕ̂)|n〉 = 0 〈n− 1|V ′(ϕ̂)|n〉 = ng2

N
√
Rn

(4.4)

which for our potential have the form

0 = Sn + S2
n + Rn+1 + Rn − g2L〈n| 1

τ − ϕ̂
|n〉 (4.5a)

ng2

N
√
Rn

=
√
Rn(1 + Sn + Sn−1)− g2L〈n− 1| 1

τ − ϕ̂
|n〉. (4.5b)
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The operator(τ − ϕ̂)
−1 is the resolvent of a random motion on the latticeN . In order to

perform the planar limitN → ∞ it is convenient to introduce the conjugate operatorsl̂ and
θ̂ [28], defined by

l̂|n〉 = n

N
|n〉 e±iθ̂ |n〉 = |n± 1〉. (4.6)

The operatorϕ̂ can be expressed as

ϕ̂ =
√
R(l̂)eiθ̂ + S(l̂)+ e−iθ̂

√
R(l̂). (4.7)

In the large-N limit, l̂ commutes withθ̂ and can be taken equal to the identity. Assuming
the limitsR = limn→∞ Rn, S = limn→∞ Sn, the operator̂ϕ simplifies to

ϕ̂ = 2
√
R cosθ + S. (4.8)

In the planar limit we have

〈n|(τ − ϕ̂)
−1|n〉 →

∫ 2π

0

dθ

2π

1

τ − ϕ(θ)
= 1√

(τ − S)2 − 4R
(4.9a)

and

〈n− 1|(τ − ϕ̂)
−1|n〉 →

∫ 2π

0

dθ

2π

eiθ

τ − ϕ(θ)
= 1

2
√
R

(
τ − S√

(τ − S)2 − 4R
− 1

)
. (4.9b)

The equations of motion in the planar limit read as

0 = S + S2 + 2R − g2LG−1(R, S, τ ) (4.10a)

g2 = R + 2RS + g2L

2
[1 − (τ − S)G−1(R, S, τ )] (4.10b)

where we denoteG(R, S, τ) =
√
(τ − S)2 − 4R. Equations (4.10) correspond to (2.8) with

the identifications

S = σ R = δ2

4

and provideS = S(τ, g2, L) andR = R(τ, g2, L). The continuum limit of the system
corresponds to a critical surface in the three-dimensional parameter space spanned by the
variablesτ , g2 andL. We can ensure critical behaviour by imposing the following scaling:

S = S0 + S1a R = R0 + R1a g2 = g2
0 +3a` g2L = γ0 + 0ak (4.11)

with ` > 1 andk > 1, wherea is a cut-off vanishing in the continuum limit. Indeed (4.11)
imply ∂S/∂g2 = ∞ = ∂R/∂g2.

The conditionG(R0, S0, τ ) 6= 0 characterizes the perturbative phase. Inserting the
scaling laws (4.11) in (4.10) and requiring non-trivial solutions forS1 andR1, leads to the
equation:

4R0(1 + 3S0 − τ)2 = [(1 + 2S0)(τ − S0)− S0(1 + S0)− 6R0]2 (4.12)

fully equivalent to the critical equation (3.9). As in Kazakov’s model [7], the analysis of
the critical behaviour is simplified by considering the neighbourhood ofL = 0. The critical
values areS0 = −3+√

3
6 , R0 = 1

12, g2
0 = 1

12
√

3
; the consistent value for the exponents` and

k is 2. This is the ‘small holes’ phase.
Let us now consider the non-perturbative phase. WhenG(R0, S0, τ ) tends to zero asg2L

vanishes a new critical behaviour arises: the phenomenon of spontaneous tearing discussed
in [7]. Inserting the scaling laws (4.11) withγ0 = 0 and the conditionG(R0, S0, τ ) = 0, in
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(4.10) (we observe that in the non-perturbative phase` is not assumed to be greater than
one because criticality is ensured by the vanishing ofG), we obtainR0(τ ), S0(τ ) andg2

0(τ )

coinciding withδ2
0/4, σ0 andg2

0 given by (3.11), and the equation

23 = τ(1 + 3S0 − τ)[2R1 − S1(τ − S0)] (4.13)

with the constraintτ 6 τc = (
√

3 − 1)/2 for the non-perturbative phase. The consistent
values for` andk are 1 and3

2, respectively.
The caseτ = τc (critical tearing) has to be investigated separately, since equation (4.13)

implies3 = 0 in this limit. Note that (4.10) may be rewritten as

R = 1

2

S(1 + S)(τ − S)− g2(L− 2)

1 + 3S − τ
(4.14a)

0 = S(1 + S)(1 + 2S)+ g2(2 − L)− g2L(1 + 3S − τ)G−1. (4.14b)

If 1 + 3S0 − τc = 0 it is straightforward to check that the scaling law compatible with
equations (4.14) whenτ → τc is

R = R0 + R1a S = S0 + S1a τ = τc − T a

g2 = g2
0 +3a3/2 g2L = 0a3/2

(4.15)

to be compared with the corresponding law in Kazakov’s model [8]:

R = R0 + R1a τ = τc − T a

g2 = g2
0 +3a2 g2L = 0a5/2.

(4.16)

It follows that in our model the dynamical holes exhibit, in the intermediate phase, a
different scaling behaviour with respect to Kazakov’s model. Indeed the typical area of the
surface diverges at criticality as 1/(g2

0 − g2), while the total perimeter of the holes on the
surface diverges as 1/(τc − τ). Then in the border phase (critical tearing) the scaling laws
(4.15) imply for our model that the ‘length’ of the holes scales as the area to the power of
2
3, while (4.16) imply for Kazakov’s model that in the border phase the length of the holes
scales as the square root of the area.

It is interesting to observe that if we defined our model with the potential

V1(M) = 1
2M

2 − 1
3gM

3 g > 0 (4.17)

instead of (1.5b), the equations corresponding to (4.14) would be

R = 1

2

S(1 − S)(τ − S)− g2(L− 2)

1 − 3S + τ
(4.18a)

0 = S(1 − S)(1 − 2S)− g2(2 − L)− g2L(1 − 3S + τ)G−1 (4.18b)

with the critical valuesS0 = 3−√
3

6 , R0 = 1
12 andτc = (3 + √

3)/6 the positive solution of
the equation(τc − S0)

2 − 4R0 = 0. In this case 1− 3S0 + τc 6= 0 and (4.18) admit a scaling
law completely analogous to (4.16), implying the same scaling behaviour for the holes as
in Kazakov’s model even in the border phase.

Let us explain this point. The one-matrix model

V (M) = 1
2M

2 + 1
3gM

3

is invariant underg → −g andM → −M. Therefore it has two critical points,g∗ and−g∗,
which are equivalent for the purely cubic model and both describe pure gravity. When the
random surface is coupled to the holes, the two critical points are no longer equivalent: if
the surface reaches the continuum limit by sendingg to g∗ then holes have the same scaling
behaviour as in Kazakov’s model, while sendingg to −g∗, holes have a different scaling
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behaviour in the border phase. The ‘anomalous’ scaling behaviour of the dynamical holes
in the border phase is connected with the following feature of our model when it describes
a random surface with a single hole: the absence of the dilute phase for the single static
hole interacting with the random surface [29].

5. Asymptotics of orthogonal polynomials

In this section we show the relationship between theL-expansion of the partition function

ZN(L, t) =
∫

DM exp{−N Tr[V (M)+ L log(t −M)]} (5.1)

with arbitrary potentialV (M), with the asymptotics for largeN of the orthogonal polynomial
PN(λ) with the measure e−NV (λ) dλ. Such asymptotic behaviour has recently attracted
interest, after the works [30] where it was shown that it provides the (connected) joint
probability distributions for the eigenvalues.

The monic polynomial of degreeN is given explicitly by the formula [31]

PN(t) = 1

C

∫ N∏
i=1

dλi
∏
i<j

(λi − λj )
2
N∏
i=1

(t − λi) exp

[
−N

N∑
i=1

V (λi)

]
(5.2)

whereC is the proper normalization factor. The formula can be the starting point for
an asymptotics inN , with t ∈ (a0, b0), as investigated by Eynard. We remark that the
first-order coefficientE1(t) provides theleading asymptotic behaviour, for largeN , of the
orthogonal polynomialPN(t) of the one-matrix model with potentialV (M) in the one arc
phase.

To take care of the log, the relation is written as follows:

PN(t) = 1

2C

[
ZN

(
− 1

N
, t + iε

)
+ ZN

(
− 1

N
, t − iε

)]
(5.3)

note that we setL = −1/N . For large but finiteN , logZN is computed by means of the
planar free energyEN(−1/N, t) = E0 − (1/N)E1(t)+ O(1/N2) where the remainder has
the same weight inN as the non-planar terms of the free energy. Using the saddle-point
equation for the densityρ0(λ)

V (t)− 2
∫ b0

a0

dλ ρ0(λ) log |t − λ| = constant

we have, up to irrelevant 2π i terms and fort in the support(a0, b0) of the density:

E1(t ± iε) = 1
2V (t)± iπ

∫ t

a0

ρ0(s) ds. (5.4)

We then find the following leading behaviour, for largeN , consistent with the more detailed
formula found by Eynard:

PN(t) ≈ exp

{
N

2
(V (t)+ c1)

}
cos

[
πN

∫ t

a0

ρ0(s) ds + O(1)
]

(5.5)

where c1 is a constant which depends on the normalization forPN and, in particular, it
vanishes forPN not monic but with unit norm. The omitted termsO(1) cannot be accounted
for by a planar calculation, since they would require the contribution from the graphs on
the torus and higher genera.
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6. Conclusions

In this paper we analysed a model of random surfaces with coherently oriented boundaries,
defined in (1.5), evaluated the free energy in the spherical limit, equation (2.5), and the
continuum limits associated to the phases of the model. Both the model and its analysis are
parallel to Kazakov’s model [7] where the boundaries are not oriented. The phase diagram
for the two models are similar. Figure 3 shows the phase diagram of Kazakov’s model.
Critical behaviour occurs only below the lineL = 4/z2, with three inequivalent continuum
limits. The phase describing surfaces with small holes is forg/z2 > 2/3, whereas the
‘tearing phase’ is forg/z2 < 2/3. The boundary line is the vertical segmentg/z2 = 2/3.

Figure 4 is the phase diagram of the model analysed in this paper. The plotted line,
with equation

τ = 1 + 3σ = − 1
2 + 1

2

√
3 + 18(g2L)2/3 (6.1)

Figure 3. Phase diagram of Kazakov’s model. The continuous line has equationg/z2 = 2/3.

Figure 4. Phase diagram of the present model. On the horizontal axis are the values of
τ = g/(2z). The curve originates atτ = (

√
3− 1)/2, corresponding to the critical values of the

parameters of the one-matrix model with cubic interaction.
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is the boundary between a ‘small hole phase’ (right) and a ‘tearing phase’ (left). In both
the above phases we find that the total perimeter of the holes〈l〉, as well as the average
number of holes〈h〉, have the same critical exponents in terms of the fugacityL that appear
in the model [7], thus confirming the universality of Kazakov’s analysis.

However, in sections 3 and 4 it is carefully shown that the boundary phase (6.1) has
critical exponents and scaling behaviour inequivalent to the corresponding ones of the
boundary phase of Kazakov’s model. This difference is due to partial cancellations in the
perturbative expansion of the free energy. The model with the opposite sign of the cubic
coupling, equation (4.17), does not have such cancellations and it has the same critical
exponents of Kazakov’s model in all three phases.

The model analysed in this paper is also related to theO(n) vector model on random
surfaces [18–20] which, in the spherical limit, describes non-intersecting loops drawn on
trivalent planar graphs. Those loops are not oriented and may include part of the trivalent
graph and/or other loops, unlike the coherently oriented loops of the present model, which
are microscopic or macroscopic holes. The complete analytic solution of theO(n) model
is not yet available in the spherical limit and, because of the relation mentioned at the end
of the introduction, the analytic solution of the present, much simpler model, may be a step
towards it.
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Appendix

We here assume that the free energy, equation (2.5), and the parametersσ = gs, δ = gd

computed by (3.8), allow a formal Taylor expansion aroundL = 0, and we quote the first
termE1. Setting

σ(g, L, τ) = σ0(g)+ Lσ1(g, τ )+ L2σ2(g, τ )+ · · · (A.1a)

δ(g, L, τ) = δ0(g)+ Lδ1(g, τ )+ L2δ2(g, τ )+ · · · (A.1b)

we find, at the lowest order, the parameters of the pure cubic model:σ0(g) solves the cubic
equation

σ0(1 + σ0)(1 + 2σ0)+ 2g2 = 0 (A.2a)

δ2
0 = −2σ0(1 + σ0). (A.2b)

At the next order we giveσ1 only:

σ1(g, τ ) = g2

1 + 6σ0 + 6σ 2
0

[
1 + (1 − τ + 3σ0)√

(τ − σ0)2 + 2σ0(1 + σ0)

]
. (A.3)

The above coefficients lead to the evaluation of the first two coefficients of theL expansion
of the free energy

E0(g) = 1

2
log[1 + 2σ0] − 1

3
σ0

2 + 6σ0 + 3σ 2
0

(1 + 2σ0)2(1 + σ0)
(A.4)
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which obviously reproduces the well known free energy of the cubic model [17], and

E1(g, τ ) = −2 log(2g)+ log

[
(τ − σ0)+

√
(τ − σ0)2 − δ2

0

]
− 1 − 1

6g2
σ 2

0 (3 + 2σ0)

+ 1

g2

(
1

2
τ 2 + 1

3
τ 3

)
+

[
1

3

σ0(2 + 3σ0)+ τ(6σ 2
0 + 11σ0 + 6)

(1 + 2σ0)(1 + σ0)

+ 1

6g2
(τ 2σ0(1 − 2σ0)+ τ 3(2σ0 − 3)− 2τ 4)

]
1√

(τ − σ0)2 − δ2
0

. (A.5)
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